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Abstract

This work focuses on the numerical assessment of the accuracy of an adjoint-based
gradient in the perspective of variational data assimilation and parameter identification
in glaciology. We quantify the ability to identify the basal slipperiness for such methods
with a non-linear friction law. The complete adjoint problem is solved and a comparison5

with the so called “self-adjoint” method, neglecting the viscosity dependency to the ve-
locity, common in glaciology, is carried out. A lower bound of identifiable wavelengths
of 10 ice thickness in the friction coefficient is established, when using the full adjoint
method, while the “self-adjoint” method is limited to a maximum of 20 ice thickness
wavelengths. In addition, the full adjoint method demonstrates a better robustness and10

reliability for the parameter identification process. The derivation of the adjoint model
using algorithmic differentiation leads to formulate a generalization of the “self-adjoint”
approximation towards an incomplete adjoint method, adjustable in precision and com-
putational burden.

1 Introduction15

The main available observations of the cryosphere are generally obtained from remote-
sensed techniques and are thus essentially surface observations. In other respects, the
ice dynamic is known to be highly sensitive to the state of the bedrock and therefore
to its modeling. The basal slipperiness is consequently a crucial parameter in the per-
spective of controlling ice flows.20

This raises questions about, on the one hand, the ability for the surface data to
encompass basal conditions and, on the other hand, the potential for inverse methods
to recover information.

The first question has been treated by many authors through the problem of the ef-
fect of the bedrock topography on the surface. Balise and Raymond (1985) propose25

one of the earlier study concerning the transmission at surface of basal slipperiness
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fluctuations in the case of a Newtonian fluid, using perturbation methods. The non-
local aspect of the transmission of the variations of the friction coefficient at surface is
established in Raymond (1996) depending on the slip ratio (ratio between mean sliding
velocities and mean ice deformation velocities). These queries are extended in Gud-
mundsson (2003), still under the Newtonian hypothesis using perturbation methods.5

One of the main conclusions is the increase of the transmission of basal variability at
surface with an increased sliding.

The question of the representability of the friction coefficient through surface veloc-
ity observations (horizontal and vertical) using an inverse method is studied by Gud-
mundsson and Raymond (2008). The method, based on a Bayesian approach, is used10

to study the effect of density and quality of surface velocity data on the estimation of
the friction coefficient for a Newtonian fluid and a linear sliding law. A limit wavelength
in the reconstruction of small amplitude variations of the friction coefficient is found to
be around 50 times the ice thickness. A similar method in the case of a non-Newtonian
fluid and a non-linear sliding law is developed in Raymond and Gudmundsson (2009).15

In other respects, the identification method based on Macayeal (1993) and widely
used (see e.g. Larour et al., 2005; Joughin et al., 2004; Morlighem et al., 2010) makes
the assumption that viscosity is independent of the velocity and a limited attention has
been paid to the quality of the resulting estimations in terms of spatial variability of the
friction coefficient (see Gudmundsson and Raymond, 2008). Comparisons with this so20

called “self-adjoint” method and the use of an exact adjoint are made by Goldberg and
Sergienko (2011), based on a vertically integrated approximation. Limitations for the
minimizing process are highlighted when using the “self-adjoint” method. To the best of
our knowledge, the use of an exact adjoint for the non-Newtonian Stokes problem has
been done only by Petra et al. (2012). A comparison to the results of Gudmundsson25

and Raymond (2008) on an academic problem bring them to conclude that the exact
adjoint method is able to recover wavelengths in the friction coefficient of approximately
20 times the ice thickness in the case of a linear sliding law.
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The purpose of this study is the numerical evaluation of the limitations of the “self-
adjoint” method compared to the exact method. The “self-adjoint” approximation is pre-
sented as a limit case of the reverse accumulation method used to compute the adjoint
when obtained using source-to-source automatic differentiation. From a strictly numer-
ical perspective, numerical tests on the reachable accuracy of the gradients for both5

methods are performed, demonstrating an important limitation for the gradient com-
puted by the “self-adjoint” method. We then study the identifiability, for a non-linear
sliding law, of high frequencies in the friction coefficient depending on the level of noise
considered on synthetic data. The quality of the estimations provided by both methods
is compared in the case of dense horizontal surface velocity observations for a quasi-10

uniform flow and then for a realistic flow presenting an important spatial variability. The
realistic case is eventually treated for less dense data.

2 Forward and backward model

In this section, we briefly present what shall be referred to hereafter as the forward
model and describe the derivation of the adjoint model and the computation of the15

adjoint state.

2.1 Forward model

The flow model considered here is the bidimensional power-law Stokes model applied
to a gravity driven flow, discretized using triangular Taylor–Hood finite-elements and
solved on a given domain Ω:20

div(u) = 0 in Ω (1)

−div(2η(u)D
¯
)+∇p = ρg in Ω (2)

η(u) = η0 ‖D
¯
‖

1−n
n

F (3)
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where σ
¯
= η(u)D

¯
−pId represents the Cauchy stress tensor, η(u) the viscosity, η0 the

consistency of the fluid, n the power-law exponent, D
¯

the strain rate tensor, u = (ux,uz)

the velocity field, p the pressure field, ρ the ice density, g the gravity and ‖D
¯
‖2

F =D
¯

: D
¯

the Frobenius matrix norm.
A Weertman-type sliding law is prescribed at the bedrock boundary Γfr:5

|σnt|m−1σnt = βu · t on Γfr (4)

u ·n = 0 on Γfr (5)

A velocity profile corresponding to the solution of the Stokes problem for a uniform
steady flow in a flat channel with non-linear friction defined by Eq. (4) at the bottom is10

prescribed on the inflow boundary. This solution u = (ux̄,uz̄), expressed in the “mean-
slope” reference frame (x,z), writes (see e.g. Martin and Monnier, 2013):

ux(z) =
(−ρgsin(θ)h)m

β
+

1
1+n

(2η0)−n(ρgsin(θ))1+n(h1+n − (H − z)1+n) (6)

uz = 0 (7)

p(z) = ρgcos(θ)(H − z) (8)15

with θ defining the slope of the channel, H the height of the upper-surface and h the
thickness of the channel.

A hydrostatic pressure is considered on the outflow. All the simulations are performed
with an exponent m = 3 for the sliding law. The solution of the continuous forward prob-20

lem is obtained using a classical fixed point algorithm.
The sensitivities and identifications carried out in this work use adjoint-based com-

putation and thus require the solution of the adjoint problem associated with the full-
Stokes model.
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2.2 The basic principles of the adjoint model

The output of the forward model is represented by a scalar valued function j called
cost function, depending on the parameters of the model, which evaluate a quantity
to minimize. In presence of observations, part of the cost measures the discrepancy
between the computed state and an observed state (through any type of data).5

The parameters of interest are called control variables and constitute a control vec-
tor k. The minimizing procedure operates on this control vector to generate a set of
parameters which allows a computed state closer to the observations to be obtained.
In the sequel, the control vector includes only the spatially variable friction coefficient
β. The optimal control problem we solve reads:10

Min
k

j (k) (9)

This optimization problem is solved numerically by a descent algorithm. Thus, we
need to compute the gradient of the cost function. This is done by introducing the
adjoint model.

2.3 Cost function, twin experiments and Morozov’s discrepancy principle15

The cost function used for the identification is defined by:

j (β) =
∫
Γs

‖ uobs
s −us(β)‖2

2 dx+T (∇β) (10)

where the synthetic data uobs
s are the horizontal surface velocities perturbed with a ran-

dom Gaussian noise of varying level δ. The term T (∇β) called Tykhonov’s regulariza-
tion controls the oscillations of the control variable gradient. It is defined by:20

T (∇β) = γ
∫
Γs

‖ ∂xβ‖2
2ds (11)
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where the parameter γ quantifies the strength of the imposed smoothness. This term
plays a role of convexification for the optimal control problem and thus restricts the re-
gion of admissible parameters to smoothly varying fields. The tuning of these weights
can be achieved from various considerations generally related to the quality of the
data (or the noise level) and the degree of smoothness sought on the control variable.5

A classical approach, referred to as the Morozov’s discrepancy principle (see e.g. Vo-
gel, 2002; Martin, 2013), consists in choosing γ such that the final cost j (β;γ) matches
the noise level on the data.

The methodology of twin experiments is used as a first step towards real data pro-
cessing and calibration model. Twin experiments are defined as follows: reference pa-10

rameters of the model kref are used to generate observations uobs. Then, the goal is to
retrieve the set of parameters kref starting from an initial guess k 6= kref using the min-
imization of the cost function j . Thus, the algorithm compute at each iteration i a new
set of parameters ki according to the gradient ∂j

∂k in order to make the cost ji = j (ki )
decrease.15

Twin experiments are an ideal framework in which the only source of uncertainty
comes from the ignorance of the parameters. It plays a role of validation of the mini-
mization procedure and gives information on its efficiency and on the robustness of the
inverse problem.

2.4 Derivation of the adjoint model20

In order to efficiently compute all partial derivatives of the cost function j (k) with respect
to the components of the control vector k, we introduce the adjoint model (see e.g.
Lions, 1971).

In DassFlow software, the adjoint model is obtained by using algorithmic differen-
tiation of the source code (see Honnorat et al., 2007; DassFlow Software). This last25

approach ensures a better consistency between the computed cost function (including
all types of errors i.e. discretization errors, rounding errors, iterative algorithms etc.)
and its gradient, since it is the computed cost function that is differentiated. A large part
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of this extensive task can be automated using automatic differentiation (see Griewank,
1989). In the case of DassFlow-Ice, the direct code is written in Fortran 95 and is
derived using the automatic differentiation tool Tapenade (see Hascoët and Pascual,
2004).

Let K be the space of control variables and Y the space of the forward code re-5

sponse. In the present case, we have:

k = (β)T and Y = (y , j )T

where β is defined by Eq. (4).
Let us point out that we include both the state and the cost function in the response

of the forward code. The direct code can be represented as an operator M : K −→Y10

such that:

Y =M(K)

The tangent model becomes ∂M
∂k (k) : K −→Y. As input variable, it takes a perturba-

tion of the control vector dk ∈ K, it then gives the variation dY ∈ Y as output variable:

dY =
∂M
∂k

(k) ·dk15

The adjoint model is defined as the adjoint operator of the tangent model. This can be
represented as follows:(
∂M
∂k

(k)
)∗

: Y′ −→K′

It takes dY ∗ ∈ Y′ as an input variable and provides the adjoint variable dk∗ ∈ K′ at
output:20

dk∗ =
(
∂M
∂k

(k)
)∗

·dY ∗
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Now, let us make the link between the adjoint code and the gradient dj
dk we seek to

compute. By definition of the adjoint, we have:〈(
∂M
∂k

)∗
·dY ∗, dk

〉
K′×K

=
〈

dY ∗,
(
∂M
∂k

)
·dk

〉
Y′×Y

(12)

It reads, using the relations presented above:

〈dk∗, dk〉K′×K = 〈dY ∗, dY 〉Y′×Y . (13)5

If we set dY ∗ = (0,1)T and by denoting the perturbation vector dk = (δβ)T , we obtain:

〈(
0
1

)
,
(

dy∗

dj ∗

)〉
Y′×Y

=
〈(

δβ∗) ,
(
δβ

)〉
K′×K

Furthermore, we have by definition:

dj =
∂j
∂β

(k) ·δβ (14)

Therefore, the adjoint variable dk∗ (output of the adjoint code with dY ∗ = (0,1)T ) corre-10

sponds to the partial derivatives of the cost function j :

∂j
∂β

(k) = β∗ (15)

A single integration of the forward model followed by a single integration of the adjoint
model allow to compute all components of the gradient of the cost function.

The optimal control problem (Eq. 9) is solved using a local descent algorithm, more15

precisely the L-BFGS algorithm (a quasi-Newton method), implemented in the M1QN3
routine (see Gilbert and Lemaréchal, 1989). Thus, these partial derivatives are used
as input to the minimization algorithm M1QN3. The global optimization process is rep-
resented in Fig. 1.
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2.5 Validation of the adjoint model

In order to control the validity of the adjoint code two tests are performed: the scalar
product test and the gradient test.

2.5.1 Gradient Test

This test aim to control that the partial derivatives of the cost function are correctly5

computed by comparing it with a finite difference approximation (see e.g. Honnorat
et al., 2007, for the detailed test procedures).

Let us consider the following order two central finite difference approximation of the
gradient:

j (k +αδk)− j (k −αδk)

2α δk
=

∂j
∂k

(k)+M2
α2δk2

3
(16)10

This scheme leads us to define:

Iα =
j (k +αδk)− j (k −αδk)

2α ∂j
∂k (k) ·δk

. (17)

According to Eq. (16), one must have: lim
α→0

Iα = 1.

The gradient test consists in verifying this property.

2.5.2 Scalar product test15

The scalar product test check that the adjoint code is actually the adjoint of the tangent
linear code by verifying that the relation (Eq. 12) holds numerically.
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3 Exact adjoint, reverse accumulation and “self-adjoint” approximation

The current model has been obtained using algorithmic (or automatic) differentiation of
the source code. Automatic differentiation of a fixed point type iterative routine of the
form y =Φ(y ,u) (such as the solution of the non-linear Stokes problem using a Picard
method) is carried out by reverse accumulation (see Griewank, 1989; Griewank et al.,5

1993). The reverse accumulation technique consists in building a computational graph
for the function evaluation where the nodes of the graph represent every value taken by
the function. To every node, an adjoint quantity containing the gradient of the function
Φ with respect to the node, is associated.

The adjoint values are computed in reverse order. The final value of the gradient is10

given by the sum of the partial derivatives of the function of the nodes of the compu-
tational graph. This result is a consequence of the chain rule. This process a priori
requires to store as many state of the system as iterations performed by the forward
solver to reach the converged state.

It is shown by Christianson (1994) that, in the case of a forward computation carried15

out by a fixed point method, the adjoint quantity also satisfies a fixed point problem
whose rate of convergence is at least equal to the rate of convergence of the forward
fixed point. Based on this result, it is a priori necessary to retain every iteration of the
forward run to evaluate the gradient. In practice, as further detailed in Sect. 3.2, the
number of reverse iterations required to obtain an adjoint state with the same precision20

of the forward state can be adjusted depending on the convergence speed of the direct
construction.

The “self-adjoint” approximation in glaciology, applied to the shallow-ice system, has
been proposed by Macayeal (1993). The approximation consists of deriving the adjoint
equation system without taking into account the explicit dependency of the viscosity η25

to the velocity field u. It seems important to recall that the terminology “self-adjoint” only
makes sense in the Newtonian case (n = 1) due to a resulting symmetrical stiffness
matrix.
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In general, the procedure consists in calculating a mechanical equilibrium based
on the complete non-linear system and to obtain the gradient by simply transposing
the final computed state. The extension of this method to the non-Newtonian Stokes
problem can be done without difficulty (see Morlighem et al., 2010). The mechanical
meaning of this method for n 6= 1 is unclear.5

In contrast, in the automatic differentiation context, the meaning of this approximation
can be easily deduced. Indeed, the use of such a method comes to retain, in the re-
verse accumulation process, only the gradient computed from the final evaluation of the
function Φ. The quality of such an approximation is thus questionable and will strongly
depend on the problem one considers and the required accuracy on the gradient.10

The quality of this approximation (compared to the exact adjoint state) for parame-
ter identification is assessed by Goldberg and Sergienko (2011) for depth-integrated
shallow-ice type equations but has never been treated for the full-Stokes equations.

3.1 Precision of the “self-adjoint” approximation

We consider the flow described in Sect. 2.1. The domain is a channel with a flat bot-15

tom and constant thickness with an aspect ratio of 1/10 on a 10% slope. The friction
condition at the bottom is given by Eq. (4) with a constant β and an exponent m = 3.
A stationary free surface flow, uniform with respect to x, is thus obtained.

The cost function is defined by:

j (k) =
1
2

∫
Γs

∣∣u(k,z)−uobs
∣∣2

dx (18)20

where the observations uobs are the horizontal velocities at the surface Γs, (x,z) desig-
nates the mean-slope frame and the control vector k is restricted to the discrete basal
slipperiness β.

The gradient tests carried out for the “self-adjoint” and exact adjoint methods, using
cost function (18), are plotted on Fig. 2. The tests are performed for various levels of25
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precision of the forward problem ν = ‖ uk+1 −uk ‖ / ‖ uk ‖ in order to quantify the best
attainable precision by the backward problem with respect to ν. This precision is explic-
itly given to the direct solver through a convergence threshold but can be seen as the
available accuracy on the data uobs; data presenting a noise of 0.01% corresponds to
a direct solution accuracy ν = 10−4. The gradient test compares the gradient computed5

by the adjoint code to a reference gradient. For these tests, the reference gradient
is obtained using a centered finite difference approximation (of order 2) computed for
a precision on the function evaluation of 10−12. This precision being considerably higher
than those considered for the solution of the forward problem, the finite difference gra-
dient plays the role of an “exact” value (see Sect. 2.5).10

The exact adjoint shows the expected theoretical behavior. We recover the slope of
2 (in logarithmic scale) associated with the order of convergence of the finite difference
approximation (16). Figure 2 thus shows that the precision of the adjoint state is of the
same order as the one of the direct solver.

On the contrary, the precision of the gradient provided by the “self-adjoint” approxi-15

mation is rather limited. The best reachable precision is slightly smaller than 1 irrespec-
tive of the direct solver precision ν (and thus, only one gradient test curve is plotted on
Fig. 2, for the case ν = 10−8, ν being the precision of the forward solution).

The “self-adjoint” approximation used within a parameter identification process is
thus not able to provide an accurate gradient. However, as further discussed there-20

after, numerical tests demonstrate a certain ability for this approximation to partially
reconstruct the friction coefficient (for a computational cost well below the one of the
exact adjoint). Nevertheless, significant weaknesses for the reconstruction of high fre-
quencies as well as the reconstruction of the main frequency of the friction coefficient
signal, specifically for extreme situations of sliding (very slow or very fast), are brought25

to the fore.
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3.2 Truncation of the reverse accumulation

This section focuses on the effect of a truncation of the reverse accumulation process.
Figure 3 plots gradient test results obtained for a truncated evaluation of the adjoint
state. To do so, we run the gradient test on adjoint states successively cut of one
additional iteration. We thus obtain all the levels of precision attainable by all the in-5

termediary adjoint states between the full adjoint and the “self-adjoint” approximation.
This test is carried out for various levels of precision ν of the direct solver. The number
of iterations performed by the direct solver to reach the required accuracy ν depends
on this precision.

The previous results concerning the precision of the gradient presented previously10

are well recovered (see Fig. 2). The lowest precision, identical for every ν and equal
to 0.6, is obtained from the “self-adjoint” approximation (corresponding to 1 reverse
iteration) and the highest precision is reached by the full adjoint (corresponding to the
last point of each curve).

A linear decreasing of the error (in logarithmic scale) presenting a slope of 3.7 is15

observed. This error behavior is coherent with the result of Christianson (1994) who
states that the computation of the adjoint state by reverse accumulation amount to
a fixed point computation. In the present case, we have a reverse accumulation al-
gorithm presenting a rate of convergence of 3.7. Yet, the convergence speed of the
forward fixed point (not plotted here) leads to a slope of 3. The convergence of the ad-20

joint state computation is therefore higher than the one of the direct state computation.
This result explains the plateau observed for the final iterations; indeed, a faster con-
vergence of the reverse accumulation algorithm allows to reach the converged adjoint
state with fewer iterations.

Again, the accuracy of the “self-adjoint” approximation appears strongly limited and25

the possibility of an incomplete method, intermediary between the complete adjoint
and the retention of only one iteration could bring an important gain of precision; taking
into account the linearly decreasing error (in logarithmic scale) leads to significantly

3866

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/7/3853/2013/tcd-7-3853-2013-print.pdf
http://www.the-cryosphere-discuss.net/7/3853/2013/tcd-7-3853-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
7, 3853–3897, 2013

Of the gradient
accuracy in

Full-Stokes ice flow
model

N. Martin and J. Monnier

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

improved accuracy for each additional iteration retained during the computation of the
adjoint state.

Furthermore, the faster convergence of the reverse accumulation algorithm com-
pared to the direct solver allows, in any case, to spare few iterations during the com-
putation of the adjoint state without any loss of precision. The number of unnecessary5

iterations is a priori strongly dependent on the situation and must be studied in every
case.

For the present test case, we observe that the 5 last iterations during the reverse
accumulation are useless whatever the level of precision of the forward run (see the
plateau on Fig. 3). These 5 last iterations correspond to the 5 first iterations carried10

out by the direct solver. Avoiding the accumulation of these iterations for the adjoint
state evaluation amounts to starting the reverse accumulation from a residual on the
forward run of 0.1 (i.e. a relative variation between two successive iterates of 0.1).
This observation, although dependent on the considered case, can be seen as an
empirical method to define a criteria on the number of direct iterations that should15

be accumulated to obtain the best accuracy on the adjoint state. In the present case,
it amounts to initiate the memory storage of direct iterations once the direct solver
residual is lower than 0.1.

4 Basal slipperiness identifiability

This section focuses on the practical limits of identifiability of the basal slipperiness by20

both the full adjoint and the “self-adjoint” method.
The main goal is to draw conclusions on the possibility of using the “self-adjoint”

method (which brings an important time and memory saving) and then on the quality
of the results it provides in the perspective of realistic identification of the basal slipper-
iness. The quality of the results is evaluated in terms of frequencies and amplitudes of25

the reconstructed friction coefficients compared to the target ones.
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As presented before, the precision of the “self-adjoint” gradient is bounded, whatever
the level of precision of the direct solver ν. This level of precision can be seen as
an a priori accuracy on the data considered in the cost function. Only synthetic data
are used in the present work. A Gaussian noise of level δ is thus added a posteriori
to emulate real data. The precision of the full adjoint gradient depending on ν (and5

equivalently on the level of noise δ on the data), we seek to observe which value of ν
is required to observe the limit of precision of the self-adjoint method.

To this end, we consider three noise levels δ of 0.01%, 0.1% and 1% representing
respectively very low, low and realistic noise. In all cases, to just observe the final cost
reached by both methods does not allow their precision, for a noise level greater or10

equal to 1%, to be distinguished. On the contrary, the frequency analysis demonstrates
that an identical final cost does not mean an identical reconstruction of the friction
coefficient. It shows the equifinality issue on this type of ill-posed inverse problem.

We first consider the idealized case of a quasi-uniform flow in a sloppy channel with
flat bottom with very low and low noise level in order to highlight the numerical limits of15

the “self-adjoint” method.
We then perform pseudo-realistic, spatially variable, flow experiments with a realistic

noise for various density of the surface data. All the identifications presented hereafter
use, as an initial guess for the friction coefficient, the average value a of the target
coefficient.20

4.1 Quasi-uniform flow

The following experiments are performed on the same flat bottom channel as in
Sect. 3.1. A non-linear friction law, defined by Eq. (4) is considered at the bottom with
an exponent m = 3. The target friction coefficient, variable in x, is given by:

βn
r (x) = a+

a
2

sin
(

2πx
20dx

)
+
a
5

n∑
i=1

fi (x) (19)25
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and

f1(x) = sin
(

2πx
10dx

)
(20)

f2(x) = sin
(

2πx
4dx

)
(21)

f3(x) = sin
(

2πx
2dx

)
(22)

5

where a is the average value of the basal slipperiness in Pa · s ·m−1. By extension, we
set:

f0(x) = sin
(

2πx
20dx

)
(23)

where dx = 0.2 m denotes the length of a basal edge or, in other words, the sharpness
of the bedrock discretization.10

We set βr = β3
r , the friction coefficient resulting from the sum of 4 frequencies cor-

responding to wavelengths of 20, 10, 5 and 2 edge length dx. The low frequency f0
represents a carrier wave for the 3 higher frequencies fi ,1 ≤ i ≤ 3. In terms of thick-
ness of the domain h, frequencies fi ,0 ≤ i ≤ 3 correspond to wavelengths of 4h, 2h,
0.8h and 0.4h respectively. The coefficients βn

r ,1 ≤ n ≤ 3 are plotted on Fig. 4 for the15

case a = 1. These properties are summarized in Table 1.
The flow is uniform when the basal slipperiness is constant along the domain and

can be described as quasi-uniform when the basal slipperiness is given by Eq. (19).
We seek to determine the level of spatial variability of the basal slipperiness the full

adjoint and the “self-adjoint” method can provide through the identification process,20

based on surface velocity observations, with respect to the degree of slip. The degree
of slip depends on the value of parameter a and will be described thereafter in terms
of slip ratio r . The slip ratio is a dimensionless quantity that quantifies how slippery the
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bedrock is. It is calculated as the ratio of the mean sliding velocity ub to the difference
between mean surface velocity us and mean basal velocity ub (cf. Hindmarsh, 2004).
It leads to:

r = ub/|us −ub| (24)

A slip ratio r = 1 represents a situation where surface velocities result half from the5

sliding and half from the deformation.
We consider 6 different slip ratios ranging from very high friction (close to adherence)

to very rapid sliding. The slip ratios r = 0.005, r = 0.05 and r = 0.5 can be described
as moderate sliding and the slip ratios r = 5, r = 50 and r = 500 as rapid sliding.

In order to bring to the front the limitations of the “self-adjoint” approximation, the10

following identifications of β are performed for noise levels δ = 0.1% and δ = 0.01%
on the surface velocity data. Let us point out that the “self-adjoint”method provides
very similar results to the full adjoint in terms of final cost when δ = 1% (not plotted on
Fig. 5) and the distinction between both methods clearly appears for lower noises.

The cost function is defined by:15

j (β) =
1
2

∫
Γs

∣∣∣us(n)−uobs
s (nt)

∣∣∣2
dx+γ

∫
[0,L]

∇β · ∇β dx (25)

The tuning of the regularization parameter γ is achieved according to the Morozov
discrepancy principle (see Sect. 2.3). We plot on Fig. 5 the application of this method
to the identifications performed with both methods (full adjoint and “self-adjoint”) in the
case of an intermediate friction (r = 0.5). The corresponding curves for other slip ratios20

are identical and consequently not plotted.
Figure 5 clearly demonstrates the inability, for the “self-adjoint” method, to provide

a gradient accurate enough for sufficiently low noise. As a matter of fact, the “self-
adjoint” gradient does not allow the optimal misfit, corresponding to noise levels δ =
0.1% and δ = 0.01%, to be reached. In this situation, the “self-adjoint” approximation25

is a priori not valid. This observation is independent of the degree of slip.
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In order to study the effects of the approximation on the gradient computation, we
compare, in the following, the friction coefficient inferred by both methods for δ = 0.01%
and δ = 0.1%.

The best inferred friction coefficient (according to Morozov) are noted βf for the full-
adjoint and βs for the self-adjoint. The quantities β̂f and β̂s thus denote their associated5

Discrete Fourier Transform (DFT). We denote by β̂r the DFT associated to the target
friction coefficient (Eq. 19). The DFT β̂r , β̂f and β̂s obtained for the three small slip
ratios (moderate sliding) are plotted on Fig. 6 and those obtained for the three high slip
ratios (rapid sliding) are plotted on Fig. 7.

4.1.1 Moderate sliding10

One observes first that frequencies f0 and f1 (see Table 1) are globally well reproduced
by both methods for δ = 0.01% whatever the slip ratio. Namely the carrier frequency f0
is very well reconstructed by both methods and this property seems desirable. The full
adjoint method shows a greater robustness when identifying these two low frequencies
with respect to the slip ratio whereas a noticeable deterioration for the identification of15

frequency f1 occurs for the “self-adjoint” method when slip ratio decreases.
However, frequency f2 appears correctly captured by the full adjoint method while

it does not appear in the spectrum of the “self-adjoint” one. An increased difficulty in
capturing this frequency occurs with slip ratio decreasing.

Finally, the highest frequency f3 does not appear in any of the spectrums of both βf20

and βs whatever the degree of slip.
For a noise level δ = 0.1%, one loses the ability to retrieve frequency f2 using the

exact method. The identification of frequency f1 is accurately obtained for the slip ratio
r1 = 0.5 but we observe a deterioration of the result when slip ratio decreases. The
“self-adjoint” method captures almost none of frequency f1 whatever the slip ratio.25

Concerning the carrier frequency, one observes difficulties for the “self-adjoint”
method to reconstruct it accurately even for the slip ratio r1 = 0.5. The frequency dis-

3871

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/7/3853/2013/tcd-7-3853-2013-print.pdf
http://www.the-cryosphere-discuss.net/7/3853/2013/tcd-7-3853-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
7, 3853–3897, 2013

Of the gradient
accuracy in

Full-Stokes ice flow
model

N. Martin and J. Monnier

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

tinctly appears on the spectrum but only 80% of the target amplitude is recovered. The
decreasing of the slip ratio deteriorates, for both methods, the identification of f0. In the
case r3 = 0.005, the full adjoint method recovers 70% of the target amplitude where
the “self-adjoint” method recovers 50%.

4.1.2 Rapid sliding5

Again, low frequencies f0 and f1 are well retrieved with the full adjoint method for every
noise level. The carrier wave reconstruction is nevertheless diminished (around 80%
of the target amplitude) compared to the moderate sliding situation r1 = 0.5 but stable
with the increasing of r . Similarly, frequency f1 is rather well represented by the exact
method for all the situations despite a certain degradation with increasing r . However,10

frequency f2 does not appear in any spectrum irrespective of both slip ratio and method,
contrarily to the moderate sliding situations. Again, frequency f3 is never captured.
A small but noticeable noise appears for the case r = 500 for the full adjoint method,
particularly when δ = 0.01%.

The “self-adjoint” method shows a relatively good reconstruction of f0 and f1 for the15

case r = 5 but introduces a noises between frequencies f1 and f2. A strong deterioration
of the reconstruction occurs when r increases; for a noise level δ = 0.1%, the “self-
adjoint” identification is almost unable to recover the signal for r ≥ 50.

4.1.3 Assessments

From these observations, we draw the following conclusions. Firstly, the degree of slip20

of the target plays a strong role for the limit of identifiability of the basal slipperiness in
terms of frequencies; a smaller slip ratio induces a lower sensitivity of the flow to the
basal slipperiness and consequently a higher filtering on the transmission of informa-
tion from the bedrock to the surface.
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This result is in coherence with the result presented in Martin and Monnier (2013)
where one observes a propagation of the sensitivity along the thickness when the
vertical velocity profile approaches the one of a plug flow.

A strong friction induces a vertical velocity profile rather convex with velocity gradi-
ents (shearing) mostly concentrated close to the bottom and thus a lower transmission5

of the information from the bottom to the surface.
Similarly to strong frictions, low frictions also reduce the quality of the reconstruc-

tion. Again it comes from a reduced sensitivity of the flow to the basal slipperiness
when rapid sliding occurs but this lower sensitivity appears for different reasons. Intu-
itively, the case of a very low friction leads to lower local topographical effects and the10

resistance to the ice flow acts through an equivalent global topography at larger scale.
This characteristic appears in the explicit solution of the uniform flow (Eq. 6): in order
for the mathematical expression to makes sense when β tends to 0, it requires the
slope parameter θ to tend to 0 as well. This phenomena is physically observed: in the
presence of an extended sub-glacial lake, one observes a signature of this lake at the15

surface as a very flat surface topography over the lake. This interpretation is retrieved
in the normalized sensitivities plotted on Fig. 10.

These two observations allow to state the existence of a numerical identifiability max-
imum for the friction coefficient using adjoint-based method; the best situation to carry
out quality identifications corresponds to the intermediate friction range where sliding20

effects and deformation effects on the dynamics are balanced (typically 0.5 < r < 5).
The low accuracy of the “self-adjoint” gradient appears to be a strong limitation in the
case of rapid sliding (r > 5).

For the current quasi-uniform flow, for a noise level δ = 0.1%, a limit on identifiable
wavelength using full adjoint, for any degree of slip, is 2h, h the thickness of the domain.25

More accurate data could allow to infer higher frequencies in the case of moderate
sliding (r ≥ 0.5).
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For the “self-adjoint” method, for a slip ratio r ≤ 5, a wavelength of 4h is well inferred
and a wavelength of 2h is captured for r = 0.5 and r = 5. For a slip ratio r > 5, the
frequencies considered in the experiment are inappropriate.

In other respects, a tendency for the “self-adjoint” method to introduce non-physical
interferences within the inferred coefficient for very low noise appears. This non desir-5

able phenomena increases when the slip ratio takes extreme values. Beyond the ap-
proximation aspect, one can deduce a lack of robustness of the “self-adjoint” method
for very low noises. It seems coherent regarding the low precision the “self-adjoint”
gradient provides. On the contrary, the full adjoint method provides a less accurate
identification when the slip ratio goes away from 1 without introducing non physical10

effects in the inferred parameter.
It is of interest to notice that the inability to recover frequency f3 is not a numerical

limitation. For sufficiently accurate data, it is also identifiable using the exact adjoint.
Similar experiments are performed in the next section for a pseudo-realistic flow ran

on a radar vertical profile of the grounded part of the Mertz glacier in Antarctica for15

surface velocity data with different density and a 1% noise.

4.2 Real topography flow: the Mertz glacier

The flow considered in this section is identical to the one presented in Eq. (2.1). The
computational domain is built from real field data; topography of the bedrock and of the
surface are bidimensional radar-sensed layer of the Mertz ice tongue in East Antarc-20

tica. These layers have been measured along a flowline of this outlet glacier (Ameri-
can program ICECAP 2010, see Greenbaum et al., 2010). Our study focuses on the
grounded part of the glacier.

Synthetic data are obtained using the following friction coefficient:

βn
r (x) = a+

a
2

sin
(

2πx
50dx

)
+
a
5

n∑
i=1

fi (x) (26)25
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and

f1(x) = sin
(

2πx
20dx

)
(27)

f2(x) = sin
(

2πx
10dx

)
(28)

f3(x) = sin
(

2πx
5dx

)
(29)

5

with a the average basal slipperiness, dx = 100 m the bedrock edge length and one
set:

f0(x) = sin
(

2πx
50dx

)
(30)

The context of a non-uniform flow on a complex topography allows to carry on the
comparison between both methods in the case of a realistic flow simulation. We can10

then draw practical conclusions on the validity of using the “self-adjoint” approximation.
Frequency f0 is a carrier wave with 50dx wavelength corresponding to 5h, h ∼ 1km
the average thickness of the domain. Frequencies f1, f2 and f3 correspond then to
wavelengths of 2h, h and h/2 respectively, providing a situation similar to the channel
test case (see Table 2).15

In the present case of a non uniform flow with complex topography, it is not feasible
to simulate an average slip ratio r = 500. Given the important spatial variability, we are
able to achieve a maximum average slip ratio r = 50. In the following identification, we
consider only 5 slip ratios ranging from r = 0.005 to r = 50.

The Morozov’s discrepancy principle applied to these 5 situations is plotted on Fig. 8.20

The observed behavior is similar to the one noticed (but not plotted) for the previous
academical situation. Both methods behave identically in terms of cost decreasing for
a 1% noise level on the data. They demonstrate a robust behavior providing in all cases
an optimal discrepancy (according to Morozov). The trend of over-fitting of the cost (i.e.
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to realize a discrepancy smaller than the reachable one when using the target coeffi-
cient with perturbed data) already observed (for the exact adjoint) demonstrates that
the gradient accuracy provided by both methods is a priori adapted to the noise level
considered on the data. The peculiar behavior for the case r = 50 where the discrep-
ancy remains lower than the optimal one regardless of the regularization parameter γ5

is detailed thereafter.
Figure 9 plots the DFT of the friction coefficients inferred by both methods and of the

target coefficient (Eq. 19) for a noise level of 1% on the data and for the 5 slip ratios r .
While the wavelengths considered in the friction coefficient (Eq. 19) are similar (in

terms of thickness ratio) to those considered for the quasi-uniform test case, the use of10

a higher noise on a non-uniform flow deteriorated the reconstruction at all levels. The
carrier frequency amplitude (of wavelength 5h) is never fully recovered by any method
but clearly appears for r ≤ 5. Likewise, frequency f1 (of wavelength 2h), well captured
in previous simulations by the full adjoint method, is fairly well reconstructed only for
0.05 ≤ r ≤ 5. Again the “self-adjoint” method is able to recover it only very partially.15

However, the interferences introduced by the “self-adjoint” method within the inferred
friction coefficient do not appear anymore for this level of noise on the surface data.
It therefore seems coherent with the limited accuracy of the gradient provided by this
method.

As a consequence, the chosen frequencies for these simulations are too high to be20

recovered in this non-uniform flow with realistic data. Numerical experiments show that
an accurate reconstruction can be obtained, for the exact method, for a carrier wave
of wavelength 10h and a perturbation of wavelength 5h; shorter wavelengths are not
accessible.

What is of further interest is that the exact method brings, in all cases, an enhanced25

and more faithful reconstruction of the friction coefficient for both the carrier wave and
the first perturbation.

The pattern of behavior of the rapid sliding case (r = 50) is different compared to the
other cases. The full adjoint method retrieves roughly the carrier frequency with very
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high interferences (including one low frequency high amplitude interference) and the
“self-adjoint” method does not capture any information of the target signal in addition
to the initial guess.

In order to understand this phenomena, we plot on Fig. 10 the gradients ∂j/∂β(β0)
with β defined by (Eq. 26) for several average value a of the basal slipperiness, de-5

scribed in terms of slip ratio r . The computed gradients are evaluated around β0 = a.
Increasing the slip ratio has a very clear effect on the sensitivities. For slip ratios

r < 1, the sensitivities include the local effects of the high frequencies contained in β,
thus providing a highly variable gradient around an average behavior. The fact that
the sensitivity decreases with r , due to poorer information transmission between the10

bottom and the surface, is recovered. It follows that, in the cases r < 1, the limitations in
the identification of all the frequencies of the basal slipperiness come from the precision
on the data.

The situations r > 1 bring significantly smoother gradients. The cases r = 6 and
r = 13, that still represent moderate slip ratios, contain a certain local variability but15

their rather smooth appearance shows a strong correlation with the global topography
and the high frequencies of β seem already erased from the gradient. In these situ-
ations, the main component resisting the flow is more the large scale (or equivalent)
topography than the friction itself.

For higher slip ratios, the topographical effects seem to vanish as well, and the gradi-20

ent only grows from the inflow boundary to the outflow boundary to reach a maximum
value close to the right border. In the present case, one can deduce that the only effect
resisting the flow is the hydrostatic pressure considered on the right boundary.

A global decreasing of the sensitivity with increasing r is also observed, reinforcing
the existence of a sensitivity peak for in-between r . For r > 1, it is not the quality of25

the data that prevents an accurate reconstruction of β but the non-local behavior of
the flow. When basal slipperiness vanishes, it does not embody more than a small
fraction of the global resistance to the flow. An extreme example is the progress of an
ice-shelf on water where the friction resistance is close to zero. In the case of a tridi-
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mensional solution, stresses would be taken over by lateral shearing. In our case, these
effects do not exist and it is the hydrostatic pressure boundary condition that resists the
flow. These clearly non-local effects demonstrate the inability to control otherwise than
globally the flow, thus limiting the range of identifiable frequencies regardless of data
accuracy.5

These phenomena imply a strong equifinality for basal slipperiness lower than a cer-
tain value. This observation appears in the Morozov’s curves (see Fig. 8) for the case
r = 50. Indeed, the discrepancies for both methods are smaller than the theoretical
optimal one, even for very strong regularization (γ large) providing almost constant β
around β0. The initial cost itself, evaluated for a constant β equal to the average value,10

is barely higher than the theoretical optimal cost.
The associated minimization problem is ill-posed and the Tykhonov regularization on

the gradient of β does not allow to overcome this problem.
For the case r = 50 and a regularization small enough (considering that the Moro-

zov’s principle does not allow the optimal γ value to be selected) it is noticeable that the15

full adjoint method is able to retrieve a small quantity of information, along with a large
noise (optimal control problem obviously ill-posed) whereas the “self-adjoint” method
does not provide anything else than the initial guess, irrespective of the value of γ.

5 Density of the data

The previous simulations has been performed using surface velocity data quite dense20

(one measure every dx). This section deals with identical test cases to the previous
section but using sparser (one measure point every 1 km) and thus more realistic data
(corresponding to one ice thickness, see e.g. Gudmundsson and Raymond, 2008). This
density corresponds to approximately 10 times less measure points than the previous
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case. We consider thereafter the following friction coefficient for the synthetic data:

βn
r (x) = a+

a
2

sin
(

2πx
200dx

)
+
a
5

n∑
i=1

fi (x) (31)

with dx = 100 m the edge length at the bottom and with:

f1(x) = sin
(

2πx
100dx

)
(32)

f2(x) = sin
(

2πx
50dx

)
(33)5

f3(x) = sin
(

2πx
20dx

)
(34)

and:

f0(x) = sin
(

2πx
200dx

)
(35)

The friction coefficient chosen for these simulation contains lower frequencies than10

the previous one, simulating a carrier wave of wavelength 20h perturbed by high fre-
quencies of wavelengths 10h, 5h and 2h. These characteristics are summarized in
Table 3. Results are plotted on Fig. 11 for a noise level of 1%.

As a consequence, the level of identifiability assessed for dense data in the previous
section is no longer valid. However, considering that one out of ten points has been re-15

tained, results seem rather convincing. The exact method is able to accurately recover
frequencies of wavelengths 20h and 10h (corresponding to f0 and f1) for all degrees of
slip. The “self-adjoint” method recovers the carrier wave quite well although a stronger
friction (r ≤ 0.05) significantly degrades the reconstruction of the amplitude. Frequency
f1 is well captured for propitious situations (0.5 ≤ r ≤ 5). Frequency f2 (of wavelength20
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5h, the lowest frequency considered in the dense data situation) is partially recon-
structed by the exact method for r ≤ 5 and never captured by the “self-adjoint” method.

The case r = 50 is a lot less problematic than previously, due to lower frequencies
and subsequently less local effects regarding the sharpness of the bed discretization.
A pronounced difficulty appears for the identification of frequency f1 (of wavelength5

10h). The case r = 50 is the only one where frequency f2 does not appear in the spec-
trum of β̂f (consistently to the previous simulations).

6 Conclusions

The significant CPU-time saving brought by the “self-adjoint” method represents an im-
portant asset in its favor. However, its reliability is questionable and it seems important10

to know its limitations in order to perform realistic experiments.
The realistic simulation (low density data, 1% noise, real topography, non-linear fric-

tion) allows us to assess the full adjoint method’s ability to identify accurately wave-
length greater or equal to 10 ice thickness and to capture effects of wavelength up to 5
thickness for slip ratio lower than 5.15

The “self-adjoint” method is able to reconstruct wavelengths greater than 20 thick-
ness (with noticeable difficulties for strong friction). Wavelengths of 10 ice thickness
can be captured in propitious situations of intermediate sliding (0.5 ≤ r ≤ 5).

The results provided by the exact method are significantly better than those given by
Petra et al. (2012) (who assess a limit of 20 ice thickness for a non-linear rheology). It20

is difficult to compare considering that the authors provide neither their slip ratio nor the
density of the data. In addition, the authors of Petra et al. (2012) use a linear friction
law.

The use of a non-linear friction allows to simulate complex behaviors of the ice-
bedrock interaction. This type of law can describe a non-linear deformation of the basal25

substrate or a non-linear response of the sliding velocity to the water pressure of sub-
glacial cavities. The former reconstructions focus on the identification of a generic β.

3880

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/7/3853/2013/tcd-7-3853-2013-print.pdf
http://www.the-cryosphere-discuss.net/7/3853/2013/tcd-7-3853-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
7, 3853–3897, 2013

Of the gradient
accuracy in

Full-Stokes ice flow
model

N. Martin and J. Monnier

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

However one may confidently generalize these results to more complex sliding laws
where β would be identified through its parameterization (by a water pressure, a con-
tact surface with sub-glacial cavities, a sedimentary roughness, a geothermal flux,). It
is important to recall that over-parameterization is hardly ever in favor of an accurate
identification and that the identification of several parameters simultaneously would5

strongly reinforce the problem of equifinality (i.e. the ill-posedness of the optimization
problem).

This work focuses on the identification of the basal slipperiness that plays a major
role to control the flow (i.e. the model shows a great sensitivity to the friction). The
identification of a parameter such as the consistency η0, for which the model sensitivity10

is significantly lower, needs to be done with precaution for the exact adjoint method
(see Martin and Monnier, 2013) and thus with increased precaution for the “self-adjoint”
method.

Finally, the adjoint obtained from source-to-source algorithmic differentiation allows
to simulate every level of needed precision between the best precision of the exact ad-15

joint to the lowest one of the “self-adjoint” approximation. It leads to the consideration of
an incomplete adjoint methodology where the approximation is completely adjustable,
thus allowing the right compromise between CPU-time, memory burden and required
accuracy to be achieved. Numerical experiments demonstrate that the retention of the
last two states within the gradient computation significantly improves its precision while20

maintaining a quite small computational burden.
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Table 1. Characteristics of signal β given by Eq. (19).

f0 f1 f2 f3

Wavelengths w.r.t h = 1 m (thickness) 4h 2h 0.8h 0.4h
Wavelengths w.r.t. dx = 0.2 m (edge length) 20dx 10dx 4dx 2dx
Wavelengths w.r.t. L = 10 m (domain length) 2.5 Hz 5 Hz 12.5 Hz 25 Hz
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Table 2. Characteristics of signal β given by Eq. (26).

f0 f1 f2 f3

Wavelengths w.r.t h = 1 km (thickness) 5h 2h h 0.5h
Wavelengths w.r.t dx = 100 m (edge length) 50dx 20dx 10dx 5dx
Wavelengths w.r.t L = 33.3 km (domain length) 6.6 Hz 16.6 Hz 33.3 Hz 66.6 Hz
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Table 3. Characteristics of signal β given by Eq. (31).

f0 f1 f2 f3

Wavelengths w.r.t h = 1 km 20h 10h 5h 2h
Wavelengths w.r.t dx = 100 m 200dx 100dx 50dx 2dx
Wavelengths w.r.t L = 33.3 km 1.66 Hz 3.33 Hz 6.66 Hz 16.6 Hz
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Fig. 1. Principle of a 3-D-Var type variational data assimilation algorithm.
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Fig. 2. Gradient test for the exact adjoint method the “self-adjoint” method for various levels of
precision ν of the forward solution. The quantity Iα is defined by Eq. (17).
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Fig. 3. Accuracy of the gradient for incomplete reverse accumulation for various levels of preci-
sion of the direct solution ν.
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Fig. 4. Friction coefficient βn
r ,1 ≤ n ≤ 3 given by Eq. (19) with a = 1.
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Fig. 5. Application of Morozov’s discrepancy principle. Final discrepancy (or misfit) j1 =∫
Γs

∣∣∣us(n)−uobs
s (nt)

∣∣∣2
dx with respect to the value of the regularization parameter γ. The hori-

zontal line represents the level of noise corresponding to the optimal discrepancy obtained from
the target coefficient.
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Fig. 6. Discrete Fourier Transform of inferred friction coefficient βf and βs and of the target
friction coefficient βr . Moderate sliding.
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Fig. 7. Discrete Fourier Transform of inferred friction coefficient βf and βs and of the target
friction coefficient βr . Rapid sliding.
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Fig. 8. Morozov’s discrepancy principle applied to slip ratios r = 0.005, r = 0.05, r = 0.5, r = 5
and r = 50 on the realistic flow. Absolute values of the discrepancy correspond to the real
value obtained during the simulations. The range of parameter γ has been modified to remain
between 1 and 105 for the sake of readability.
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Fig. 9. Discrete Fourier Transform for inferred friction coefficients βf and βs and for the target
one βr . Frequency f3 is never captured by any method and is thus not plotted on the curves.
A noise level δ = 1% is used in all situations.
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Fig. 10. Relative sensitivities to the friction coefficient with respect to the abscissa x for various
slip ratios, evaluated around the average value a.
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Fig. 11. Discrete Fourier Transform for inferred friction coefficients βf and βs and for the target
one βr for sparse data a 1% noise level.
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